| Name : | Date : | |--|---------| | → The Mole and Avogadro's Answer the following questions. 1) How many moles are there in 3.01 x 10 ²² Mg atoms? | | | 2) Find the number of moles in 452 g of Ar. | | | 3) How much does 3.45 moles of CO ₂ weigh? | | | 4) How many O_2 molecules are present in 3.36 grams of | oxygen? | | 5) How many NO ₂ molecules are present in 14 grams? | | | Name : Date : | |---------------| |---------------| ## → The Mole and Avogadro's Number Worksheet — ## **Answers** 1) How many moles are there in 3.01 x 10²² Mg atoms? 6.023 x 10²³ Mg atoms are present in 1 mole $3.01 \times 10^{22} \text{ Mg atoms are present in } [(3.01 \times 10^{22})/(6.023 \times 10^{23})] = 0.05 \text{ moles}$ 2) Find the number of moles in 452 g of Ar. Molar mass of Ar = 39.948 g/mol 39.948 grams of Ar are present in 1 mole 452 grams of Ar are present in = 452/39.948 moles = 11.31 moles 3) How much does 3.45 moles of CO₂ weigh? Molar mass of CO_2 = 44.01 g/mol 1 mole of CO_2 weighs 44.01 grams 3.45 moles of CO_2 weighs 151.83 grams 4) How many O₂ molecules are present in 3.36 grams of oxygen? Molar mass of O_2 = 31.999 g/mol So, 31.999 grams of oxygen contain 1 mole, i.e., 6.023 x 10^{23} molecules 3.36 grams of oxygen contain (3.36/31.999) x 6.023 x 10^{23} = 6.3 x 10^{24} molecules 5) How many NO₂ molecules are present in 14 grams? Molar mass of NO_2 = 46.0055 g/mol 46.0055 grams of NO_2 are represented by 1 mole 14 grams of NO_2 are represented by 0.304 moles = 0.304 x 6.023 x 10^{23} molecules = 1.83 x 10^{23} molecules