__Empirical & Molecular Formula_

1. Determine the molecular formula for each compound whose percentage composition is 84.9% Hg and the remainder Cl, with a molecular weight of 472.2 g/mol.
2. The empirical formula of a compound is P2O5. Experiments show that the molar mass of the compound is 283.9 g/mol. What is the molecular formula of the compound?
3. A compound has the following composition – 76.54% C, 12.13% H, and 11.33% O. If its molar mass is 282.5 g/mol, what is its molecular formula?
4. What is the formula for a hydrate which consists of 90.7% SrC_2O_4 and 9.3% H_2O ?"

ChemistryLearner.com

Name : ______ Date : _____

Empirical & Molecular Formula_

Answers

1. Determine the molecular formula for each compound whose percentage composition is 84.9% Hg and the remainder Cl, with a molecular weight of 472.2 g/mol.

2. The empirical formula of a compound is P2O5. Experiments show that the molar mass of the compound is 283.9 g/mol. What is the molecular formula of the compound?

```
Molar mass of P = 30.97 g/mol  Molar mass of O = 16.00 g/mol   Empirical mass of P_2O_5 = (2 \times 30.97 g/mol) + (5 \times 16.00 g/mol) = 141.94 g/mol   Ratio = 283.9 g/mol/141.94 g/mol = 2   Molecular formula = (P_2O_5)_2 = P_4O_{10}
```

3. A compound has the following composition – 76.54% C, 12.13% H, and 11.33% O. If its molar mass is 282.5 g/mol, what is its molecular formula?

```
Moles of C = 76.54 g / 12.01 g/mol = 6.373 moles/0.708 moles = 9 Empirical formula Moles of H = 12.13 g / 1.01 g/mol = 12.01 moles/0.708 moles = 17 = C_9H_{17}O Moles of O = 11.33 g / 16.00 g/mol = 0.708 moles/0.708 moles = 1 Empirical formula mass = (9 \times 12.01 \text{ g/mol}) + (17 \times 1.01 \text{ g/mol}) + (1 \times 16.00 \text{ g/mol}) = 141.26 \text{ g/mol} Ratio = 282.5 g/mol/141.26 g/mol = 1. Molecular formula = C_9H_{17}O
```

4. What is the formula for a hydrate which consists of 90.7% SrC₂O₄ and 9.3% H₂O?"

```
Moles of SrC_2O_4 = 90.7 g / 175.64 g/mol = 0.516 moles /0.516 moles = 1
Moles of H_2O = 9.3 g / 18.02 g/mol = 0.516 moles /0.516 moles = 1
Formula = SrC_2O_4 \cdot H_2O
```

Chemistry	Learner.com
C	hemistry