

	What is the molecular formula of a molecule with an empirical formula of CH2O and molar mass of 120.1 g/mol?
	What is the molecular formula of the molecule with an empirical formula of CH2Cl and a molar mass of 247.5 g/mol?
	Determine the formula for the hydrate from the given information. a. $0.391~g~\text{Li}_2\text{SiF}_6$, $0.0903~g~\text{H}_2\text{O}$
k	b. 76.9% CaSO₃, 23.11% g H₂O

ChemistryLearner.com

Name : _____ Date : ____

Answers

1) What is the molecular formula of a molecule with an empirical formula of CH₂O and a molar mass of 120.1 g/mol?

```
Empirical formula mass = (1 \times 12.01 \text{ g/mol}) + (2 \times 1.01 \text{ g/mol}) + (1 \times 16.00 \text{ g/mol})
= 30.03 g/mol
```

Ratio = Molar mass/Empirical formula mass = 120.1 g/mol/ 30.03 g/mol = 4 Molecular formula = $(CH_2O)_4 = C_4H_8O_4$

2) What is the molecular formula of the molecule with an empirical formula of CH₂Cl and a molar mass of 247.5 g/mol?

Empirical formula mass = $(1 \times 12.01 \text{ g/mol}) + (2 \times 1.01 \text{ g/mol}) + (1 \times 35.5 \text{ g/mol})$ = 49.48 g/mo

Ratio = 247.5 g/mol / 49.48 g/mol = 5

Molecular formula = $(CH_2CI)_5 = C_5H_{10}CI_5$

- 3) Determine the formula for the hydrate from the given information.
 - a. $0.391 \text{ g Li}_2\text{SiF}_6$, $0.0903 \text{ g H}_2\text{O}$

Moles of
$$\text{Li}_2\text{SiF}_6 = 0.391$$
 g/ 155.97 g/mol = 2.5069 x $10^{\text{-3}}$ mol/2.5069 x $10^{\text{-3}}$ mol = 1 Moles of $\text{H}_2\text{O} = 0.0903$ g/ 18.02 g/mol = 5.011 x $10^{\text{-3}}$ mol/2.5069 x $10^{\text{-3}}$ mol = 2 Formula = $\text{Li}_2\text{SiF}_6 \cdot 2\text{H}_2\text{O}$

b. 76.9% CaSO₃, 23.11% g H₂O

Moles of $CaSO_3 = 76.9 \text{ g}/120.15 \text{ g/mol} = 0.640 \text{ mol}/0.640 \text{ mol} = 1$

Moles of $H_2O = 23.11$ g/ 18.02 g/mol = 1.2819 mol/0.640 mol = 2

Formula = $CaSO_3 \cdot 2H_2O$

Name : ______ Date : _____ Chemistry